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Genetic Basis of Peroxisome-Assembly Mutants of
Humans, Chinese Hamster Ovary Cells, and Yeast:
Identification of a New Complementation Group of
Peroxisome-Biogenesis Disorders Apparently Lacking
Peroxisomal-Membrane Ghosts

To the Editor:
Complementation analysis has been used to study the
genetic basis of peroxisome-biogenesis disorders (PBDs;
MIM 601539) at the Academic Medical Centre (AMC)
in the Netherlands (Brul et al. 1988), Kennedy Krieger
Institute (KKI) in the United States (Roscher et al. 1989),
and Gifu University in Japan (Yajima et al. 1992). These
initial studies led to identification of 15 complementa-
tion groups. When we standardized these complemen-
tation groupings to establish the true number of different
complementation groups, we found a total of 9 inde-
pendent groups (Shimozawa et al. 1993). In only 5 years,
the molecular study of PBDs has advanced rapidly: (1)
Several peroxisome-deficient mutants of Chinese ham-
ster ovary (CHO) cells and yeast were isolated, and these
mutants were used to clone PEX genes, by functional
complementation, that are required for peroxisome as-
sembly. (2) Five PEX genes involved in peroxisome bio-
genesis—PEX1, -2, -5, -6, and -12—have been identified
as apparently responsible for PBD groups E (group 1 at
KKI), F (group 10 at KKI), 2, C (group 4 at KKI), and
3, respectively (Shimozawa et al. 1992b; Dodt et al.
1995; Fukuda et al. 1996; Yahraus et al. 1996; Chang
et al. 1997; Okumoto and Fujiki 1997; Portsteffen et al.
1997; Reuber et al. 1997); and PEX7 was found to be
responsible for rhizomelic chondrodysplasia punctata
(RCDP) (Braverman et al. 1997; Motley et al. 1997;
Purdue et al. 1997). (3) The role of these six PEX genes
may be importing peroxisomal-matrix protein, since
empty peroxisomal-membrane structures (peroxisomal
ghosts) were seen in fibroblasts from PBD groups C (4
at KKI), E (1 at KKI), 2, and 3 (Santos et al. 1988;
Wendland and Subramani 1993).

We have now identified a new complementation group
of PBDs, group J (we are leaving out “I” to avoid con-
fusion with group 1 at KKI), which is genetically dif-

ferent from the 11 currently known groups, including
complementation groups G (Poulos et al. 1995) and H
(Shimozawa et al. 1998). Complementation tests on hu-
man fibroblasts from various PBD patients were per-
formed by restoration of peroxisomes by means of im-
munocytochemical staining of catalase in fused cells
(Yajima et al. 1992). Formation of peroxisomes in the
majority of multinucleated cells was detected after fusion
between fibroblasts from the patient and fibroblasts
from the 11 complementation groups (A–H, 2, 3, and
6) of PBD (data not shown). These observations mean
that this patient can be regarded as representing a new
complementation group, J (table 1). Interestingly, careful
immunofluorescence-microscopy studies of fibroblasts
from a patient belonging to the newly identified group
J, performed with an antibody directed against human
70-kD peroxisomal-membrane protein (PMP [PMP70])
(Imanaka et al. 1996), revealed the absence of empty
peroxisomal-membrane structures (ghosts) (fig. 1a and
b), as well as, when performed with anti–human catalase
antibody, catalase-containing particles—that is, peroxi-
somes (fig. 2a and b). Furthermore, among the 11 com-
plementation groups so far tested, fibroblasts from all
patients belonging to group D very rarely have peroxi-
somal ghosts (fig. 1c) and those from group G have none
(fig. 1d), whereas peroxisomal ghosts were detected in
the fibroblasts from PBD groups A–C, E, F, H, 2, 3, and
6 (fig. 1e–m). In fibroblasts from a patient with
RCDP, both catalase-containing (fig. 2c) and PMP70-
containing particles were seen (fig. 1n). In addition, we
performed immunofluorescent staining with an anti–
adrenoleukodystrophy protein (ALDP; 75-kD PMP) an-
tibody. As in the case of PMP70, ALDP-positive particles
were not detected in fibroblasts from PBD complemen-
tation groups G and J, and ALDP-positive particles were
rarely found in those from group D. In contrast, ALDP-
positive particles that were larger and fewer than those
in control fibroblasts were detected in fibroblasts from
the other nine complementation groups (data not
shown). These results suggest that the primary defect in
PBD groups D, G, and J may not be matrix-protein
import but, rather, synthesis or maintenance of PMP
(Santos et al. 1988; Wendland and Subramani 1993;
Baerends et al. 1996; Dodt and Gould 1996; Wiemer et
al. 1996).



Shimozawa et al.: Letters to the Editor 1899

Table 1

Complementation Groups of PBDs

COMPLEMENTATION

GROUP

PHENOTYPE(S)b

PEROXISOMAL-
MEMBRANE

GHOSTSc

CHO
MUTANT(S)

HUMAN

GENE MAPPING

YEAST

GENEGifu KKIa AMC

A 8 ZS, NALD, IRD �
B 7 (5) ZS, NALD �
C 4 3 ZS, NALD � ZP92 PEX6 (PAF2) 6p21.1 Pex6
D 9 ZS �
E 1 2 ZS, NALD, IRD � Z24, ZP101 PEX1 7q21-22 Pex1
F 10 5 ZS, IRD � Z65 PEX2 (PAF1) 8q21.1 Pex2
G ZS �
H NALD �
J ZS � ZP119d

2 4 ZS, NALD � ZP102 PEX5 12p13.3 Pex5
3 ZS � ZP104, ZP109 PEX12 Pex12
6 NALD �

ZP110, ZP 111
ZP114

R 11 1 RCDP PEX7 6q22-24 Pex7

a The numbering listed under KKI is based on the study by Moser et al. (1995).
b NALD denotes neonatal adrenoleukodystrophy, and IRD denotes infantile Refsum disease.
c A plus sign (�) indicates presence, and a minus sign (�) indicates absence.
d Kinoshita et al. (1998).

The patient from the newly identified complementa-
tion group J had the phenotype of classic Zellweger syn-
drome (ZS; MIM 214100). Dihydroxyacetone phos-
phate acyltransferase activity was severely diminished in
fibroblasts from the patient (0.11 nmol/120 min per mg
protein), in comparison with findings in control fibro-
blasts (1.55 nmol/120 min per mg protein) (Shimozawa
et al. 1988). b-Oxidation activity of lignoceric acid rel-
ative to that of palmitic acid in this patient’s fibroblasts
was also decreased (0.038), in comparison with findings
in the control cells (0.58), determined as described by
Suzuki et al. (1991). In addition, all of the patients from
PBD groups D, G, and J had only the severe phenotype
of ZS (Shimozawa et al. 1993; Poulos et al. 1995),
whereas some patients from the other nine PBD groups
had the severe phenotype but others had milder phe-
notypes, such as neonatal adrenoleukodystrophy and in-
fantile Refsum disease.

We then performed cell fusion between fibroblasts
from group J and CHO mutants ZP110 (Tateishi et al.
1997), ZP114 (Tateishi et al. 1997), and ZP119, the
CHO mutant newly isolated by Kinoshita et al. (1998),
which were found to belong to complementation groups
other than the known PBD groups (A-H, 2, 3, 6, and
RCDP) (Shimozawa et al. 1998). Numerous peroxi-
somes were detected after fusion by use of methods re-
ported elsewhere (Shimozawa et al. 1992a), between fi-
broblasts and CHO mutants ZP110 (fig. 2d) and ZP114,
whereas no peroxisome was detected after fusion be-
tween fibroblasts and ZP119 (fig. 2e). These observa-
tions imply that the newly identified CHO mutant

ZP119 represents ZS fibroblasts from group J. Further-
more, this CHO mutant, like group J, had no peroxi-
somal ghosts (Kinoshita et al.; 1998), whereas large but
fewer particles immunoreactive with anti-PMP70 anti-
body were detected in CHO mutants Z24, Z65, and
ZP92, which belong to the same complementation
groups as E, F, and C, respectively (Shimozawa et al.
1992a).

We then transfected human PMP70 cDNA (Kamijo
et al. 1992) into fibroblasts lacking peroxisomal ghosts,
from groups D, G, and J, according to methods reported
elsewhere (Shimozawa et al. 1996). In all these trans-
fectants, peroxisomes were not detected when we per-
formed immunostaining with an anti–human catalase
antibody (fig. 2f–h), and the same held true for trans-
fectants of PMP70 into fibroblasts from groups A–C, E,
F, H, 2, 3, and 6 (data not shown). Therefore, human
PBD groups caused by defects in the PMP70 gene have
heretofore not been identified. Furthermore, when we
transfected, into the fibroblasts from the group J patient,
human PEX13 cDNA, which encodes an SH3 protein
of the peroxisomal membrane (Gould et al. 1996). Per-
oxisomes were not evident in the transfectants (fig. 2i).
In summary, (1) in mammalian cell lines there are 15
known peroxisomal-deficient complementation groups,
including RCDP and CHO mutants; (2) abnormalities
of PMP synthesis, not matrix-protein import, may be
the primary defect, at least in PBD groups D, G, and J,
and all patients from these groups manifested only the
severe phenotype of ZS, whereas the other groups in-
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cluded various phenotypes; and (3) there were no PBD
groups complemented by human PMP70.

It was first reported that in ZS fibroblasts from com-
plementation group 4 at KKI (group C at Gifu [PEX6
defect]) the PMPs were located in unusual empty
membrane structures (peroxisomal ghosts) of a larger
size—a finding determined mainly by use of an anti-
PMP70 antibody (Santos et al. 1988).Later, ghost size
and abundance were noted in seven ZS fibroblasts be-
longing to five complementation groups (Santos et al.
1992), and detectable PMP70 in vesicles was noted in
those from KKI groups 1 (E at Gifu), 2, 3, 6, and 8 (A
at Gifu) (Wendland and Subramani 1993). ALDP-pos-
itive particles were also detected in two PBD cell lines
from group 1 but were rare in ZS fibroblasts from group
D (Mosser et al. 1994). All these data support our find-
ings of heterogeneity of peroxisomal ghosts in PBD com-
plementation groups.

At least 18 yeast PEX genes have been identified, and
several human genes have been considered to be human
orthologues of these PEX genes. It has been suggested
that there are yeast mutants without peroxisomal
ghosts—for example, Hansenula polymorpha per9 or
Pichia pastoris pas2 (PEX3 gene defect) (Baerends et al.
1996; Wiemer et al. 1996)—and that these PEX genes
may play roles of synthesis or maintenance of peroxi-
somal membrane. Therefore, any of these PEX genes
may be primary defects of PBD groups D, G, and J. We
are using western blot and pulse-chase experiments with
some PMP antibodies to perform detailed analyses of
ghosts in these three groups, and we are examining genes
responsible for these PBD groups by identifying human
orthologues of these PEX genes and by performing func-
tional cloning of peroxisome-deficient CHO mutants.
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